TY - GEN
T1 - A machine learning based method for classification of fractal features of forearm sEMG using Twin Support vector machines
AU - Arjunan, S. P.
AU - Kumar, D. K.
AU - Naik, G. R.
PY - 2010
Y1 - 2010
N2 - Classification of surface electromyogram (sEMG) signal is important for various applications such as prosthetic control and human computer interface. Surface EMG provides a better insight into the strength of muscle contraction which can be used as control signal for different applications. Due to the various interference between different muscle activities, it is difficult to identify movements using sEMG during low-level flexions. A new set of fractal features - fractal dimension and Maximum fractal length of sEMG has been previously reported by the authors.These features measure the complexity and strength of the muscle contraction during the low-level finger flexions. In order to classify and identify the low-level finger flexions using these features based on the fractal properties, a recently developed machine learning based classifier, Twin Support vector machines (TSVM) has been proposed. TSVM works on basic learning methodology and solves the classification tasks as two SVMs for each classes. This paper reports the novel method on the machine learning based classification of fractal features of sEMG using the Twin Support vector machines. The training and testing was performed using two different kernel functions - Linear and Radial Basis Function (RBF).
AB - Classification of surface electromyogram (sEMG) signal is important for various applications such as prosthetic control and human computer interface. Surface EMG provides a better insight into the strength of muscle contraction which can be used as control signal for different applications. Due to the various interference between different muscle activities, it is difficult to identify movements using sEMG during low-level flexions. A new set of fractal features - fractal dimension and Maximum fractal length of sEMG has been previously reported by the authors.These features measure the complexity and strength of the muscle contraction during the low-level finger flexions. In order to classify and identify the low-level finger flexions using these features based on the fractal properties, a recently developed machine learning based classifier, Twin Support vector machines (TSVM) has been proposed. TSVM works on basic learning methodology and solves the classification tasks as two SVMs for each classes. This paper reports the novel method on the machine learning based classification of fractal features of sEMG using the Twin Support vector machines. The training and testing was performed using two different kernel functions - Linear and Radial Basis Function (RBF).
UR - http://www.scopus.com/inward/record.url?scp=78650806933&partnerID=8YFLogxK
U2 - 10.1109/IEMBS.2010.5627902
DO - 10.1109/IEMBS.2010.5627902
M3 - Conference contribution
C2 - 21097298
AN - SCOPUS:78650806933
SN - 9781424441235
T3 - 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
SP - 4821
EP - 4824
BT - 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
T2 - 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Y2 - 31 August 2010 through 4 September 2010
ER -