TY - JOUR
T1 - A Technical Comparative Heart Disease Prediction Framework Using Boosting Ensemble Techniques
AU - Nissa, Najmu
AU - Jamwal, Sanjay
AU - Neshat, Mehdi
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/1
Y1 - 2024/1
N2 - This paper addresses the global surge in heart disease prevalence and its impact on public health, stressing the need for accurate predictive models. The timely identification of individuals at risk of developing cardiovascular ailments is paramount for implementing preventive measures and timely interventions. The World Health Organization (WHO) reports that cardiovascular diseases, responsible for an alarming 17.9 million annual fatalities, constitute a significant 31% of the global mortality rate. The intricate clinical landscape, characterized by inherent variability and a complex interplay of factors, poses challenges for accurately diagnosing the severity of cardiac conditions and predicting their progression. Consequently, early identification emerges as a pivotal factor in the successful treatment of heart-related ailments. This research presents a comprehensive framework for the prediction of cardiovascular diseases, leveraging advanced boosting techniques and machine learning methodologies, including Cat boost, Random Forest, Gradient boosting, Light GBM, and Ada boost. Focusing on “Early Heart Disease Prediction using Boosting Techniques”, this paper aims to contribute to the development of robust models capable of reliably forecasting cardiovascular health risks. Model performance is rigorously assessed using a substantial dataset on heart illnesses from the UCI machine learning library. With 26 feature-based numerical and categorical variables, this dataset encompasses 8763 samples collected globally. The empirical findings highlight AdaBoost as the preeminent performer, achieving a notable accuracy of 95% and excelling in metrics such as negative predicted value (0.83), false positive rate (0.04), false negative rate (0.04), and false development rate (0.01). These results underscore AdaBoost’s superiority in predictive accuracy and overall performance compared to alternative algorithms, contributing valuable insights to the field of cardiovascular health prediction.
AB - This paper addresses the global surge in heart disease prevalence and its impact on public health, stressing the need for accurate predictive models. The timely identification of individuals at risk of developing cardiovascular ailments is paramount for implementing preventive measures and timely interventions. The World Health Organization (WHO) reports that cardiovascular diseases, responsible for an alarming 17.9 million annual fatalities, constitute a significant 31% of the global mortality rate. The intricate clinical landscape, characterized by inherent variability and a complex interplay of factors, poses challenges for accurately diagnosing the severity of cardiac conditions and predicting their progression. Consequently, early identification emerges as a pivotal factor in the successful treatment of heart-related ailments. This research presents a comprehensive framework for the prediction of cardiovascular diseases, leveraging advanced boosting techniques and machine learning methodologies, including Cat boost, Random Forest, Gradient boosting, Light GBM, and Ada boost. Focusing on “Early Heart Disease Prediction using Boosting Techniques”, this paper aims to contribute to the development of robust models capable of reliably forecasting cardiovascular health risks. Model performance is rigorously assessed using a substantial dataset on heart illnesses from the UCI machine learning library. With 26 feature-based numerical and categorical variables, this dataset encompasses 8763 samples collected globally. The empirical findings highlight AdaBoost as the preeminent performer, achieving a notable accuracy of 95% and excelling in metrics such as negative predicted value (0.83), false positive rate (0.04), false negative rate (0.04), and false development rate (0.01). These results underscore AdaBoost’s superiority in predictive accuracy and overall performance compared to alternative algorithms, contributing valuable insights to the field of cardiovascular health prediction.
KW - boosting
KW - comparative framework
KW - diagnosis
KW - ensemble learning
KW - heart disease
KW - machine learning
UR - http://www.scopus.com/inward/record.url?scp=85183654470&partnerID=8YFLogxK
U2 - 10.3390/computation12010015
DO - 10.3390/computation12010015
M3 - Article
AN - SCOPUS:85183654470
SN - 2079-3197
VL - 12
JO - Computation
JF - Computation
IS - 1
M1 - 15
ER -