Aerodynamic Modelling of Saab 340B Development Using Binary Particle Swarm Optimization

Murat Millidere, Mushfiqul Alam, Simon Place, James Whidborne

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

This paper follows-up previous work on the development of a high-fidelity Saab 340B aerodynamic model using system identification methods. In the prior work, Saab 340B flight tests were carried out using different excitations on the control surfaces. The flight test data was collected at predefined trim points. Thrust forces and moment were obtained using the propeller efficiency map provided by the manufacturer. The equation and output error methods were employed to analyse flight test data to estimate aerodynamic parameters in the time domain. This paper follows-up previous work on the development of a high-fidelity Saab 340B aerodynamic model using system identification methods. In the prior work, Saab 340B flight tests were carried out using different excitations on the control surfaces. The flight test data was collected at predefined trim points. Thrust forces and moment were obtained using the propeller efficiency map provided by the manufacturer. The equation and output error methods were employed to analyse flight test data to estimate aerodynamic parameters in the time domain. The paper extends the work to select independent variables in the equation error method in an optimal way using binary particle swarm to determine the best subset of independent variables. The impact of the hyperparameters of the binary PSO approach such as the transfer function scheme, inertia weight updating strategy, and the value of acceleration coefficients is investigated.

Original languageEnglish
Title of host publicationAIAA SciTech Forum and Exposition, 2024
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
ISBN (Print)9781624107115
DOIs
Publication statusPublished - 2024
Externally publishedYes
EventAIAA SciTech Forum and Exposition, 2024 - Orlando, United States
Duration: 8 Jan 202412 Jan 2024

Publication series

NameAIAA SciTech Forum and Exposition, 2024

Conference

ConferenceAIAA SciTech Forum and Exposition, 2024
Country/TerritoryUnited States
CityOrlando
Period8/01/2412/01/24

Fingerprint

Dive into the research topics of 'Aerodynamic Modelling of Saab 340B Development Using Binary Particle Swarm Optimization'. Together they form a unique fingerprint.

Cite this