TY - JOUR
T1 - Ana
T2 - Ant nesting algorithm for optimizing real-world problems
AU - Rashid, Deeam Najmadeen Hama
AU - Rashid, Tarik A.
AU - Mirjalili, Seyedali
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/12/1
Y1 - 2021/12/1
N2 - In this paper, a novel swarm intelligent algorithm is proposed called ant nesting algorithm (ANA). The algorithm is inspired by Leptothorax ants and mimics the behavior of ants searching for positions to deposit grains while building a new nest. Although the algorithm is inspired by the swarming behavior of ants, it does not have any algorithmic similarity with the ant colony optimization (ACO) algorithm. It is worth mentioning that ANA is considered a continuous algorithm that updates the search agent position by adding the rate of change (e.g., step or velocity). ANA computes the rate of change differently as it uses previous, current solutions, fitness values during the optimization process to generate weights by utilizing the Pythagorean theorem. These weights drive the search agents during the exploration and exploitation phases. The ANA algorithm is benchmarked on 26 well-known test functions, and the results are verified by a comparative study with genetic algorithm (GA), particle swarm optimization (PSO), dragonfly algorithm (DA), five modified versions of PSO, whale optimization algorithm (WOA), salp swarm algorithm (SSA), and fitness dependent optimizer (FDO). ANA outperformances these prominent metaheuristic algorithms on several test cases and provides quite competitive results. Finally, the algorithm is employed for optimizing two well-known real-world engineering problems: antenna array design and frequency-modulated synthesis. The results on the engineering case studies demonstrate the proposed algorithm’s capability in optimizing real-world problems.
AB - In this paper, a novel swarm intelligent algorithm is proposed called ant nesting algorithm (ANA). The algorithm is inspired by Leptothorax ants and mimics the behavior of ants searching for positions to deposit grains while building a new nest. Although the algorithm is inspired by the swarming behavior of ants, it does not have any algorithmic similarity with the ant colony optimization (ACO) algorithm. It is worth mentioning that ANA is considered a continuous algorithm that updates the search agent position by adding the rate of change (e.g., step or velocity). ANA computes the rate of change differently as it uses previous, current solutions, fitness values during the optimization process to generate weights by utilizing the Pythagorean theorem. These weights drive the search agents during the exploration and exploitation phases. The ANA algorithm is benchmarked on 26 well-known test functions, and the results are verified by a comparative study with genetic algorithm (GA), particle swarm optimization (PSO), dragonfly algorithm (DA), five modified versions of PSO, whale optimization algorithm (WOA), salp swarm algorithm (SSA), and fitness dependent optimizer (FDO). ANA outperformances these prominent metaheuristic algorithms on several test cases and provides quite competitive results. Finally, the algorithm is employed for optimizing two well-known real-world engineering problems: antenna array design and frequency-modulated synthesis. The results on the engineering case studies demonstrate the proposed algorithm’s capability in optimizing real-world problems.
KW - ANA
KW - Ant nesting algorithm
KW - Antenna array design
KW - Frequency-modulated synthesis
KW - Metaheuristic optimization algorithms
KW - Nature-inspired algorithms
KW - Pythagorean theorem
UR - http://www.scopus.com/inward/record.url?scp=85120616253&partnerID=8YFLogxK
U2 - 10.3390/math9233111
DO - 10.3390/math9233111
M3 - Article
AN - SCOPUS:85120616253
SN - 2227-7390
VL - 9
JO - Mathematics
JF - Mathematics
IS - 23
M1 - 3111
ER -