BFIM: Performance Measurement of a Blockchain Based Hierarchical Tree Layered Fog-IoT Microservice Architecture

Md Whaiduzzaman, Md Julkar Nayeen Mahi, Alistair Barros, Md Ibrahim Khalil, Colin Fidge, Rajkumar Buyya

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)

Abstract

Fog computing complements cloud computing by removing several limitations, such as delays and network bandwidth. It emerged to support Internet of Things (IoT) applications wherein its computations and tasks are carried out at the network's edge. Heterogeneous IoT devices interact with different users throughout a network. However, data security is a crucial concern for IoT, fog and cloud network ecosystems. Since the number of anonymous users increases and new identity disclosures occur within the IoTs, it is becoming challenging to grow mesh networks to deliver end to end communications, as the extended IoT networks resemble a mesh architecture. To reinforce data security over IoTs, we deploy a microservice-based blockchain mechanism for fogs, which works as a decentralized client-server network medium (i.e., secured end device-based communication). We implement a blockchain equipped security scheme to be used with a fog-IoT hierarchical tree-based overlay mesh architecture to address and develop the network performance issues. In this study, we consider encryption and decryption delays from IoT and fog-integrated parts to monitor data records and compare them through the developed security scheme. The blocks of a blockchain offer the desired execution results mainly in terms of the algorithmic efficiency, which correlates with the existing algorithms, namely the Advanced Encryption Standard (AES), the Rivest Shamir Adleman (RSA), and the Data Encryption Standard (DES). Our 'BFIM' scheme has an enhanced task scheduling capacity and a more efficient throughput than the AES, DES, RSA resource deliverables (i.e., tasks). Our comprehensive performance evaluation implies that the Blockchain-based Fog IoT Microservice (i.e., BFIM) architecture provides a task delivery efficiency of 78.79% (i.e., task deliverable) and a service delivery efficiency of 83.24% (i.e., task scheduling). The 'BFIM' also has an overall process delivery efficiency of 75% (i.e., time delay, throughput) in the fog layer, rather than a central cloud layer running the AES, DES, and RSA algorithms.

Original languageEnglish
Article number9496650
Pages (from-to)106655-106674
Number of pages20
JournalIEEE Access
Volume9
DOIs
Publication statusPublished - 2021

Keywords

  • Blockchain service
  • fog service delivery
  • fog-IoT ecosystem
  • hierarchical tree architecture
  • performance efficiency

Fingerprint

Dive into the research topics of 'BFIM: Performance Measurement of a Blockchain Based Hierarchical Tree Layered Fog-IoT Microservice Architecture'. Together they form a unique fingerprint.

Cite this