TY - GEN
T1 - Boosted Modified Probabilistic Neural Network (BMPNN) for network intrusion detection
AU - Tran, Tich Phuoc
AU - Jan, Tony
PY - 2006
Y1 - 2006
N2 - Most of the currently available network security techniques are not able to cope with the dynamic and increasingly complex nature of the attacks on distributed computer systems. An automated and adaptive defensive tool is imperative for computer networks. One of the emerging solutions for Network Security is the Intrusion Detection System (IDS). However, this technology still faces some challenges such as low detection rates, high false alarm rates and requirement of heavy computational power. To overcome these difficulties, this paper proposes an innovative Machine Learning algorithm called Boosted Modified Probabilistic Neural Network (BMPNN) which utilizes semi-parametric learning model and Adaptive boosting techniques to reduce learning bias and generalization variance in difficult classification. In this paper, BMPNN is implemented as a classifier to detect different types of network anomalies in the KDD-99 benchmark. Extensive experimental outcome indicates that the proposed BMPNN outperforms other state-of-the-art learning algorithms in terms of detection accuracy and model robustness at an affordable computational cost.
AB - Most of the currently available network security techniques are not able to cope with the dynamic and increasingly complex nature of the attacks on distributed computer systems. An automated and adaptive defensive tool is imperative for computer networks. One of the emerging solutions for Network Security is the Intrusion Detection System (IDS). However, this technology still faces some challenges such as low detection rates, high false alarm rates and requirement of heavy computational power. To overcome these difficulties, this paper proposes an innovative Machine Learning algorithm called Boosted Modified Probabilistic Neural Network (BMPNN) which utilizes semi-parametric learning model and Adaptive boosting techniques to reduce learning bias and generalization variance in difficult classification. In this paper, BMPNN is implemented as a classifier to detect different types of network anomalies in the KDD-99 benchmark. Extensive experimental outcome indicates that the proposed BMPNN outperforms other state-of-the-art learning algorithms in terms of detection accuracy and model robustness at an affordable computational cost.
KW - Artificial neural network
KW - Generalization variance
KW - Learning bias
KW - Network intrusion detection
UR - http://www.scopus.com/inward/record.url?scp=40649120178&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:40649120178
SN - 0780394909
SN - 9780780394902
T3 - IEEE International Conference on Neural Networks - Conference Proceedings
SP - 2354
EP - 2361
BT - International Joint Conference on Neural Networks 2006, IJCNN '06
T2 - International Joint Conference on Neural Networks 2006, IJCNN '06
Y2 - 16 July 2006 through 21 July 2006
ER -