TY - JOUR
T1 - Collaborative Regulation of LRG1 by TGF-β1 and PPAR-β/δ Modulates Chronic Pressure Overload-Induced Cardiac Fibrosis
AU - Liu, Chenghao
AU - Lim, Seok Ting
AU - Teo, Melissa Hui Yen
AU - Tan, Michelle Si Ying
AU - Kulkarni, Madhura Dattatraya
AU - Qiu, Beiying
AU - Li, Amy
AU - Lal, Sean
AU - Dos Remedios, Cristobal G.
AU - Tan, Nguan Soon
AU - Wahli, Walter
AU - Ferenczi, Michael Alan
AU - Song, Weihua
AU - Hong, Wanjin
AU - Wang, Xiaomeng
N1 - Funding Information:
This work was supported by National Medical Research Council Singapore Cooperative Basic Research Grant (NMRC/CBRG/0058/2014 to Drs Wang, Hong, and Song). Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Start-Up Grant to Drs Wang and Wahli. Singapore Biomedical Research Council Strategic Positioning Fund to Drs Wang and Hong.
Publisher Copyright:
© 2019 The Authors.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Background: Despite its established significance in fibrotic cardiac remodeling, clinical benefits of global inhibition of TGF (transforming growth factor)-β1 signaling remain controversial. LRG1 (leucine-rich-α2 glycoprotein 1) is known to regulate endothelial TGFβ signaling. This study evaluated the role of LRG1 in cardiac fibrosis and its transcriptional regulatory network in cardiac fibroblasts. Methods: Pressure overload-induced heart failure was established by transverse aortic constriction. Western blot, quantitative reverse transcription polymerase chain reaction, immunofluorescence, and immunohistochemistry were used to evaluate the expression level and pattern of interested targets or pathology during fibrotic cardiac remodeling. Cardiac function was assessed by pressure-volume loop analysis. Results: LRG1 expression was significantly suppressed in left ventricle of mice with transverse aortic constriction-induced fibrotic cardiac remodeling (mean difference, -0.00085 [95% CI, -0.0013 to -0.00043]; P=0.005) and of patients with end-stage ischemic-dilated cardiomyopathy (mean difference, 0.13 [95% CI, 0.012-0.25]; P=0.032). More profound cardiac fibrosis (mean difference, -0.014% [95% CI, -0.029% to -0.00012%]; P=0.048 for interstitial fibrosis; mean difference, -1.3 [95% CI, -2.5 to -0.2]; P=0.016 for perivascular fibrosis), worse cardiac dysfunction (mean difference, -2.5 ms [95% CI, -4.5 to -0.4 ms]; P=0.016 for Tau-g; mean difference, 13% [95% CI, 2%-24%]; P=0.016 for ejection fraction), and hyperactive TGFβ signaling in transverse aortic constriction-operated Lrg1-deficient mice (mean difference, -0.27 [95% CI, -0.47 to -0.07]; P<0.001), which could be reversed by cardiac-specific Lrg1 delivery mediated by adeno-associated virus 9. Mechanistically, LRG1 inhibits cardiac fibroblast activation by competing with TGFβ1 for receptor binding, while PPAR (peroxisome proliferator-activated receptor)-β/δ and TGFβ1 collaboratively regulate LRG1 expression via SMRT (silencing mediator for retinoid and thyroid hormone receptor). We further demonstrated functional interactions between LRG1 and PPARβ/δ in cardiac fibroblast activation. Conclusions: Our results established a highly complex molecular network involving LRG1, TGFβ1, PPARβ/δ, and SMRT in regulating cardiac fibroblast activation and cardiac fibrosis. Targeting LRG1 or PPARβ/δ represents a promising strategy to control pathological cardiac remodeling in response to chronic pressure overload.
AB - Background: Despite its established significance in fibrotic cardiac remodeling, clinical benefits of global inhibition of TGF (transforming growth factor)-β1 signaling remain controversial. LRG1 (leucine-rich-α2 glycoprotein 1) is known to regulate endothelial TGFβ signaling. This study evaluated the role of LRG1 in cardiac fibrosis and its transcriptional regulatory network in cardiac fibroblasts. Methods: Pressure overload-induced heart failure was established by transverse aortic constriction. Western blot, quantitative reverse transcription polymerase chain reaction, immunofluorescence, and immunohistochemistry were used to evaluate the expression level and pattern of interested targets or pathology during fibrotic cardiac remodeling. Cardiac function was assessed by pressure-volume loop analysis. Results: LRG1 expression was significantly suppressed in left ventricle of mice with transverse aortic constriction-induced fibrotic cardiac remodeling (mean difference, -0.00085 [95% CI, -0.0013 to -0.00043]; P=0.005) and of patients with end-stage ischemic-dilated cardiomyopathy (mean difference, 0.13 [95% CI, 0.012-0.25]; P=0.032). More profound cardiac fibrosis (mean difference, -0.014% [95% CI, -0.029% to -0.00012%]; P=0.048 for interstitial fibrosis; mean difference, -1.3 [95% CI, -2.5 to -0.2]; P=0.016 for perivascular fibrosis), worse cardiac dysfunction (mean difference, -2.5 ms [95% CI, -4.5 to -0.4 ms]; P=0.016 for Tau-g; mean difference, 13% [95% CI, 2%-24%]; P=0.016 for ejection fraction), and hyperactive TGFβ signaling in transverse aortic constriction-operated Lrg1-deficient mice (mean difference, -0.27 [95% CI, -0.47 to -0.07]; P<0.001), which could be reversed by cardiac-specific Lrg1 delivery mediated by adeno-associated virus 9. Mechanistically, LRG1 inhibits cardiac fibroblast activation by competing with TGFβ1 for receptor binding, while PPAR (peroxisome proliferator-activated receptor)-β/δ and TGFβ1 collaboratively regulate LRG1 expression via SMRT (silencing mediator for retinoid and thyroid hormone receptor). We further demonstrated functional interactions between LRG1 and PPARβ/δ in cardiac fibroblast activation. Conclusions: Our results established a highly complex molecular network involving LRG1, TGFβ1, PPARβ/δ, and SMRT in regulating cardiac fibroblast activation and cardiac fibrosis. Targeting LRG1 or PPARβ/δ represents a promising strategy to control pathological cardiac remodeling in response to chronic pressure overload.
KW - animals
KW - humans
KW - leucine
KW - mice
KW - stroke volume
UR - http://www.scopus.com/inward/record.url?scp=85076500416&partnerID=8YFLogxK
U2 - 10.1161/CIRCHEARTFAILURE.119.005962
DO - 10.1161/CIRCHEARTFAILURE.119.005962
M3 - Article
C2 - 31830829
AN - SCOPUS:85076500416
SN - 1941-3289
VL - 12
JO - Circulation: Heart Failure
JF - Circulation: Heart Failure
IS - 12
M1 - e005962
ER -