Comparison of search-based software engineering algorithms for resource allocation optimization

Nazia Bibi, Zeeshan Anwar, Ali Ahsan

Research output: Contribution to journalArticle

Abstract

A project manager balances the resource allocation using resource leveling algorithms after assigning resources to project activities. However, resource leveling does not ensure optimized allocation of resources. Furthermore, the duration and cost of a project may increase after leveling resources. The objectives of resource allocation optimization used in our research are to (i) increase resource utilization, (ii) decrease project cost, and (iii) decrease project duration. We implemented three search-based software engineering algorithms, i.e. multiobjective genetic algorithm, multiobjective particle swarm algorithm (MOPSO), and elicit nondominated sorting evolutionary strategy. Twelve experiments to optimize the resource allocation are performed on a published case study. The experimental results are analyzed and compared in the form of Pareto fronts, average Pareto fronts, percent increase in resource utilization, percent decrease in project cost, and percent decrease in project duration. The experimental results show that MOPSO is the best technique for resource optimization because after optimization with MOPSO, resource utilization is increased and the project cost and duration are reduced.

Original languageEnglish
JournalJournal of Intelligent Systems
Volume2015
DOIs
Publication statusPublished - 1 Jan 2015
Externally publishedYes

Keywords

  • Evolutionary algorithms
  • Resource allocation
  • Resource allocation optimization
  • Search-based software engineering
  • Skills management

Fingerprint Dive into the research topics of 'Comparison of search-based software engineering algorithms for resource allocation optimization'. Together they form a unique fingerprint.

  • Cite this