EEG Channel Selection for Person Identification using Binary Grey Wolf Optimizer

Zaid Abdi Alkareem Alyasseri, Osama Ahmad Alomari, Sharif Naser Makhadmeh, Seyedali Mirjalili, Mohammed Azmi Al-Betar, Salwani Abdullah, Nabeel Salih Ali, Joao P. Papa, Douglas Rodrigues, Ammar Kamal Abasi

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Electroencephalogram signals (EEG) have provided biometric identification systems with great capabilities. Several studies have shown that EEG introduces unique and universal features besides specific strength against spoofing attacks. Essentially, EEG is a graphic recording of the brain’s electrical activity calculated by sensors (electrodes) on the scalp at different spots, but their best locations are uncertain. In this paper, the EEG channel selection problem is formulated as a binary optimization problem, where a binary version of the Grey Wolf Optimizer (BGWO) is used to find an optimal solution for such an NP-hard optimization problem. Further, a Support Vector Machine classifier with a Radial Basis Function kernel (SVM-RBF) is then considered for EEG-based biometric person identification. For feature extraction purposes, we examine three different auto-regressive coefficients. A standard EEG motor imagery dataset is employed to evaluate the proposed method, including four criteria: (i) Accuracy, (ii) F-Score, (iii) Recall, and (v) Specificity. In the experimental results, the proposed method (named BGWO-SVM) obtained 94.13% accuracy using only 23 sensors with 5 auto-regressive coefficients. Besides, BGWO-SVM finds electrodes not too close to each other to capture relevant information all over the head. As concluding remarks, BGWO-SVM achieved the best results concerning the number of selected channels and competitive classification accuracies against other meta-heuristics algorithms.

Original languageEnglish
JournalIEEE Access
DOIs
Publication statusAccepted/In press - 2022
Externally publishedYes

Keywords

  • Authentication
  • Binary Optimization
  • Biometric
  • Channels selection
  • EEG
  • Electrodes
  • Electroencephalography
  • Grey Wolf Optimizer
  • Identification
  • Iris recognition
  • Sensors
  • Support vector machines
  • Visualization

Fingerprint

Dive into the research topics of 'EEG Channel Selection for Person Identification using Binary Grey Wolf Optimizer'. Together they form a unique fingerprint.

Cite this