Histopathological analysis and in situ localisation of Australian tiger snake venom in two clinically envenomed domestic animals.

Tamara Alner, Nahiid Stephens, Kathleen Davern, Simon Brown, Katrin Swindells

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Objective: To assess histopathological changes in clinically envenomed tiger snake patients and identify tissue specific localisation of venom toxins using immunohistochemistry.
Samples: One feline and one canine patient admitted to the Murdoch Pet Emergency Centre (MPEC), Murdoch University with tiger snake (Notechis sp.) envenoming. Both patients died as a result of envenomation. Non-envenomed tissue was also collected and used for comparison.
Methodology: Biopsy samples (heart, lung, kidney and skeletal muscle tissue) were retrieved 1-2 hours post death and processed for histopathological examination using Haemotoxylin and Eosin, Martius Scarlet Blue and Periodic Acid Schiff staining. Tissues were examined by light microscopy and tissue sections subjected to immunohistochemical staining using in-house generated monoclonal and polyclonal antibodies against Notechis venoms.
Results: Venom-induced pathological changes were observed in the lungs, kidneys and muscle tissue of both patients. Evidence, not previously noted, of procoagulant venom effects were apparent, with formed thrombi in the heart, lungs (small fibrillar aggregates and larger, discrete thrombi) and kidneys. Immunohistochemical assays revealed venom present in the pulmonary tissue, in and around the glomerular capsule and surrounding tubules in renal tissue and scattered throughout the Gastrocnemius muscle tissue.
Conclusion: This work has shown pathological evidence of procoagulant venom activity supporting previous suggestions that an initial thrombotic state occurs in envenomed patients. We have shown that venom toxins are able to be localised to specific tissues, in this case, venom was detected in the lung, kidney and muscle tissues of clinically envenomed animals. Future work will examine specific toxin localisation using monoclonal antibodies and identify if antivenom
molecules are able to reach their target tissues.
Original languageEnglish
Pages (from-to)304
Number of pages314
JournalToxicon
Volume58
Issue number4
DOIs
Publication statusPublished - 2011

Fingerprint Dive into the research topics of 'Histopathological analysis and in situ localisation of Australian tiger snake venom in two clinically envenomed domestic animals.'. Together they form a unique fingerprint.

  • Cite this