TY - JOUR
T1 - Implementation of the biological muscle mechanism in hasel actuators to leverage electrohydraulic principles and create new geometries
AU - Tynan, Levi
AU - Naik, Ganesh
AU - Gargiulo, Gaetano D.
AU - Gunawardana, Upul
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/2
Y1 - 2021/2
N2 - Biomimicry is a field of research that uses the functional and structural components of nature, at macroscopic and microscopic scales, to inspire solutions to problems in our industrial world. Soft robotics is an area of research that uses biomimicry, in this case, mimicking skeletal muscles (referred to in this field as “muscle-mimicking actuators”, to perform task of high difficulty, that can be operated in a harmlessly in different environments. One of the most recent advance-ments to develop from this field is the “Hydraulically amplified self-healing electrostatics (HASEL) actuator”. However, this method also brings many of the issues associated with the geometry of its design, especially with respect to the efficiency of the system. Though this system mimics the func-tionality of the skeletal muscle, there is room to adjust the existing electrostatic mechanisms, that distribute the locally produced force, to mimic the structure of the mechanism that distributes the force to the skeletal muscular, which is also locally produced. In this paper, we show that the current electrostatic parallel electrodes, as well as the zipping mechanisms, can be replaced with the sliding mechanism. This eliminates issues associated with compartmentalizing of the primary electrostatic force and the secondary hydraulic forces leading to a more efficient and controlled transmission electrostatic and hydrostatic forces to the load compared to current iterations and their geometric components.
AB - Biomimicry is a field of research that uses the functional and structural components of nature, at macroscopic and microscopic scales, to inspire solutions to problems in our industrial world. Soft robotics is an area of research that uses biomimicry, in this case, mimicking skeletal muscles (referred to in this field as “muscle-mimicking actuators”, to perform task of high difficulty, that can be operated in a harmlessly in different environments. One of the most recent advance-ments to develop from this field is the “Hydraulically amplified self-healing electrostatics (HASEL) actuator”. However, this method also brings many of the issues associated with the geometry of its design, especially with respect to the efficiency of the system. Though this system mimics the func-tionality of the skeletal muscle, there is room to adjust the existing electrostatic mechanisms, that distribute the locally produced force, to mimic the structure of the mechanism that distributes the force to the skeletal muscular, which is also locally produced. In this paper, we show that the current electrostatic parallel electrodes, as well as the zipping mechanisms, can be replaced with the sliding mechanism. This eliminates issues associated with compartmentalizing of the primary electrostatic force and the secondary hydraulic forces leading to a more efficient and controlled transmission electrostatic and hydrostatic forces to the load compared to current iterations and their geometric components.
KW - FEM
KW - HASEL actuator
KW - Integrated electrohydraulic design
KW - Sliding mechanism
UR - http://www.scopus.com/inward/record.url?scp=85101902980&partnerID=8YFLogxK
U2 - 10.3390/act10020038
DO - 10.3390/act10020038
M3 - Article
AN - SCOPUS:85101902980
SN - 2076-0825
VL - 10
SP - 1
EP - 21
JO - Actuators
JF - Actuators
IS - 2
M1 - 38
ER -