TY - JOUR
T1 - Mesh Router Nodes Placement for Wireless Mesh Networks Based on an Enhanced Moth–Flame Optimization Algorithm
AU - Taleb, Sylia Mekhmoukh
AU - Meraihi, Yassine
AU - Mirjalili, Seyedali
AU - Acheli, Dalila
AU - Ramdane-Cherif, Amar
AU - Gabis, Asma Benmessaoud
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023
Y1 - 2023
N2 - This paper proposes an enhanced version of Moth Flame Optimization (MFO) algorithm, called Enhanced Chaotic Lévy Opposition-based MFO (ECLO-MFO) for solving the mesh router nodes placement problem in wireless mesh network (WMN-MRNP). The proposed ECLO-MFO incorporates three strategies including the chaotic map concept, the Lévy flight strategy, and the Opposition-Based Learning (OBL) technique to enhance the optimization performance of MFO. Firstly, chaotic maps are used to increase the chaotic stochastic behavior of the MFO algorithm. Lévy flight distribution is adopted to increase the population diversity of MFO. Finally, OBL is introduced to improve the convergence speed of MFO and to explore the search space effectively. The effectiveness of the proposed ECLO-MFO is tested based on various scenarios under different settings, considering network connectivity and client coverage metrics. The results of simulation obtained using MATLAB 2020a demonstrate the accuracy and superiority of ECLO-MFO in determining the optimal positions of mesh routers when compared with the original MFO and ten other optimization algorithms such as Genetic Algorithm (GA), Simulated Annealing (SA), Harmony Search (HS), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Cuckoo Search Algorithm (CS), Bat Algorithm (BA), Firefly optimization (FA), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA).
AB - This paper proposes an enhanced version of Moth Flame Optimization (MFO) algorithm, called Enhanced Chaotic Lévy Opposition-based MFO (ECLO-MFO) for solving the mesh router nodes placement problem in wireless mesh network (WMN-MRNP). The proposed ECLO-MFO incorporates three strategies including the chaotic map concept, the Lévy flight strategy, and the Opposition-Based Learning (OBL) technique to enhance the optimization performance of MFO. Firstly, chaotic maps are used to increase the chaotic stochastic behavior of the MFO algorithm. Lévy flight distribution is adopted to increase the population diversity of MFO. Finally, OBL is introduced to improve the convergence speed of MFO and to explore the search space effectively. The effectiveness of the proposed ECLO-MFO is tested based on various scenarios under different settings, considering network connectivity and client coverage metrics. The results of simulation obtained using MATLAB 2020a demonstrate the accuracy and superiority of ECLO-MFO in determining the optimal positions of mesh routers when compared with the original MFO and ten other optimization algorithms such as Genetic Algorithm (GA), Simulated Annealing (SA), Harmony Search (HS), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Cuckoo Search Algorithm (CS), Bat Algorithm (BA), Firefly optimization (FA), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA).
KW - Mesh router nodes placement
KW - Moth flame optimization algorithm
KW - Network design
KW - Wireless mesh network
UR - http://www.scopus.com/inward/record.url?scp=85145898423&partnerID=8YFLogxK
U2 - 10.1007/s11036-022-02059-6
DO - 10.1007/s11036-022-02059-6
M3 - Article
AN - SCOPUS:85145898423
SN - 1383-469X
JO - Mobile Networks and Applications
JF - Mobile Networks and Applications
ER -