TY - JOUR
T1 - Multi-trial Vector-based Whale Optimization Algorithm
AU - Nadimi-Shahraki, Mohammad H.
AU - Farhanginasab, Hajar
AU - Taghian, Shokooh
AU - Sadiq, Ali Safaa
AU - Mirjalili, Seyedali
N1 - Publisher Copyright:
© Jilin University 2024.
PY - 2024
Y1 - 2024
N2 - The Whale Optimization Algorithm (WOA) is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales. In spite of its popularity due to simplicity, ease of implementation, and a limited number of parameters, WOA’s search strategy can adversely affect the convergence and equilibrium between exploration and exploitation in complex problems. To address this limitation, we propose a new algorithm called Multi-trial Vector-based Whale Optimization Algorithm (MTV-WOA) that incorporates a Balancing Strategy-based Trial-vector Producer (BS_TVP), a Local Strategy-based Trial-vector Producer (LS_TVP), and a Global Strategy-based Trial-vector Producer (GS_TVP) to address real-world optimization problems of varied degrees of difficulty. MTV-WOA has the potential to enhance exploitation and exploration, reduce the probability of being stranded in local optima, and preserve the equilibrium between exploration and exploitation. For the purpose of evaluating the proposed algorithm's performance, it is compared to eight metaheuristic algorithms utilizing CEC 2018 test functions. Moreover, MTV-WOA is compared with well-stablished, recent, and WOA variant algorithms. The experimental results demonstrate that MTV-WOA surpasses comparative algorithms in terms of the accuracy of the solutions and convergence rate. Additionally, we conducted the Friedman test to assess the gained results statistically and observed that MTV-WOA significantly outperforms comparative algorithms. Finally, we solved five engineering design problems to demonstrate the practicality of MTV-WOA. The results indicate that the proposed MTV-WOA can efficiently address the complexities of engineering challenges and provide superior solutions that are superior to those of other algorithms.
AB - The Whale Optimization Algorithm (WOA) is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales. In spite of its popularity due to simplicity, ease of implementation, and a limited number of parameters, WOA’s search strategy can adversely affect the convergence and equilibrium between exploration and exploitation in complex problems. To address this limitation, we propose a new algorithm called Multi-trial Vector-based Whale Optimization Algorithm (MTV-WOA) that incorporates a Balancing Strategy-based Trial-vector Producer (BS_TVP), a Local Strategy-based Trial-vector Producer (LS_TVP), and a Global Strategy-based Trial-vector Producer (GS_TVP) to address real-world optimization problems of varied degrees of difficulty. MTV-WOA has the potential to enhance exploitation and exploration, reduce the probability of being stranded in local optima, and preserve the equilibrium between exploration and exploitation. For the purpose of evaluating the proposed algorithm's performance, it is compared to eight metaheuristic algorithms utilizing CEC 2018 test functions. Moreover, MTV-WOA is compared with well-stablished, recent, and WOA variant algorithms. The experimental results demonstrate that MTV-WOA surpasses comparative algorithms in terms of the accuracy of the solutions and convergence rate. Additionally, we conducted the Friedman test to assess the gained results statistically and observed that MTV-WOA significantly outperforms comparative algorithms. Finally, we solved five engineering design problems to demonstrate the practicality of MTV-WOA. The results indicate that the proposed MTV-WOA can efficiently address the complexities of engineering challenges and provide superior solutions that are superior to those of other algorithms.
KW - Engineering design problems
KW - Metaheuristic algorithms
KW - Optimization
KW - Swarm intelligence algorithms
KW - Whale optimization algorithm
UR - http://www.scopus.com/inward/record.url?scp=85191746334&partnerID=8YFLogxK
U2 - 10.1007/s42235-024-00493-8
DO - 10.1007/s42235-024-00493-8
M3 - Article
AN - SCOPUS:85191746334
SN - 1672-6529
JO - Journal of Bionic Engineering
JF - Journal of Bionic Engineering
ER -