TY - GEN
T1 - Neural network based threat assessment for automated visual surveillance
AU - Jan, Tony
PY - 2004
Y1 - 2004
N2 - In automated visual surveillance systems (AVSS), reliable detection of suspicious human behavior is of great practical importance. Many conventional classifiers have shown to perform inadequately because of unpredictable nature of human behavior. Flexible models such as artificial neural network (ANN) models can perform better; however, computational requirement of ANN models can be prohibitively large for realtime video processing. It is interesting to construct a small-sized ANN classifier that can perform well for threat assessment in video-based surveillance system. In this paper, modified probabilistic neural network (MPNN) is introduced that can achieve reliable classification, with significantly reduced computation. Experiment on visual surveillance application shows that MPNN achieves good classification but with much reduced computation compared to other ANN models. In this application, trajectory profile and motion history image information from the observed human subject are used for threat assessment.
AB - In automated visual surveillance systems (AVSS), reliable detection of suspicious human behavior is of great practical importance. Many conventional classifiers have shown to perform inadequately because of unpredictable nature of human behavior. Flexible models such as artificial neural network (ANN) models can perform better; however, computational requirement of ANN models can be prohibitively large for realtime video processing. It is interesting to construct a small-sized ANN classifier that can perform well for threat assessment in video-based surveillance system. In this paper, modified probabilistic neural network (MPNN) is introduced that can achieve reliable classification, with significantly reduced computation. Experiment on visual surveillance application shows that MPNN achieves good classification but with much reduced computation compared to other ANN models. In this application, trajectory profile and motion history image information from the observed human subject are used for threat assessment.
UR - http://www.scopus.com/inward/record.url?scp=10944242283&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2004.1380133
DO - 10.1109/IJCNN.2004.1380133
M3 - Conference contribution
AN - SCOPUS:10944242283
SN - 0780383591
T3 - IEEE International Conference on Neural Networks - Conference Proceedings
SP - 1309
EP - 1312
BT - 2004 IEEE International Joint Conference on Neural Networks - Proceedings
T2 - 2004 IEEE International Joint Conference on Neural Networks - Proceedings
Y2 - 25 July 2004 through 29 July 2004
ER -