Online metaheuristic algorithm selection

Kazem Meidani, Seyedali Mirjalili, Amir Barati Farimani

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

The performance of optimization algorithms significantly depends on the landscape of the problems. It is known that there is no single algorithm that outperforms others on problems with different fitness landscapes. One of the issues in metaheuristic algorithms is keeping the balance between exploration and exploitation. The features extracted from analysis of fitness landscapes can be used to select the suitable algorithm for the given problem. However, these features are usually expensive and extracted prior to the optimization process which leads to a single algorithm to be selected. In this work, we propose an intelligent switch mechanism that enjoys an efficient non-convex ratio (ENCR) feature extracted online during the optimization to switch between two choices of algorithms, each favoring a type of landscape in terms of modality. For this work, two case studies including a pair of Harris hawks optimizer (HHO) and differential evolution (DE) and another pair of multiverse optimizer (MVO) and moth-flame optimizer (MFO) are selected among several algorithms to evaluate the performance of this framework. The proposed one-way and two-way switch algorithms take advantage of the merits of the two base algorithms to reach better final solutions and higher convergence rates in the majority of case studies. The overall comparison and ranking of the algorithms, including a random switch baseline, demonstrates the superiority of the intelligent switch mechanisms over the baselines.

Original languageEnglish
Article number117058
JournalExpert Systems with Applications
Volume201
DOIs
Publication statusPublished - 1 Sep 2022

Keywords

  • Adaptive algorithm
  • Algorithm
  • Algorithm selection
  • Benchmark
  • Efficient non-convex ratio
  • Fitness landscape analysis
  • Intelligent switch mechanism
  • Metaheuristic optimization
  • Optimization

Fingerprint

Dive into the research topics of 'Online metaheuristic algorithm selection'. Together they form a unique fingerprint.

Cite this