TY - JOUR
T1 - Polar fox optimization algorithm
T2 - a novel meta-heuristic algorithm
AU - Ghiaskar, Ahmad
AU - Amiri, Amir
AU - Mirjalili, Seyedali
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
PY - 2024
Y1 - 2024
N2 - The proposed paper introduces a new optimization algorithm inspired by nature called the polar fox optimization algorithm (PFA). This algorithm addresses the herd life of polar foxes and especially their hunting method. The polar fox jumping strategy for hunting, which is performed through high hearing power, is mathematically formulated and implemented to perform optimization processes in a wide range of search spaces. The performance of the polar fox algorithm is tested with 14 classic benchmark functions. To provide a comprehensive comparison, all 14 test functions are expanded, shifted, rotated and combined for this test. For further testing, the recent CEC 2021 test’s complex functions are studied in the unimodal, basic, hybrid and composition modes. Finally, the rate of convergence and computational time of PFA are also evaluated by several changes with other algorithms. Comparisons show that PFA has numerous benefits over other well-known meta-heuristic algorithms and determines the solutions with fewer control parameters. So it offers competitive and promising results. In addition, this research tests PFA performance with 6 different challenging engineering problems. Compared to the well-known meta-artist methods, the superiority of the PFA is observed from the experimental results of the proposed algorithm in real-world problem-solving. The source codes of the PFA are publicly available at https://github.com/ATR616/PFA.
AB - The proposed paper introduces a new optimization algorithm inspired by nature called the polar fox optimization algorithm (PFA). This algorithm addresses the herd life of polar foxes and especially their hunting method. The polar fox jumping strategy for hunting, which is performed through high hearing power, is mathematically formulated and implemented to perform optimization processes in a wide range of search spaces. The performance of the polar fox algorithm is tested with 14 classic benchmark functions. To provide a comprehensive comparison, all 14 test functions are expanded, shifted, rotated and combined for this test. For further testing, the recent CEC 2021 test’s complex functions are studied in the unimodal, basic, hybrid and composition modes. Finally, the rate of convergence and computational time of PFA are also evaluated by several changes with other algorithms. Comparisons show that PFA has numerous benefits over other well-known meta-heuristic algorithms and determines the solutions with fewer control parameters. So it offers competitive and promising results. In addition, this research tests PFA performance with 6 different challenging engineering problems. Compared to the well-known meta-artist methods, the superiority of the PFA is observed from the experimental results of the proposed algorithm in real-world problem-solving. The source codes of the PFA are publicly available at https://github.com/ATR616/PFA.
KW - Artificial intelligence
KW - Engineering applications
KW - Meta-heuristic
KW - Nonlinear optimization
KW - Polar fox algorithm
UR - http://www.scopus.com/inward/record.url?scp=85201633186&partnerID=8YFLogxK
U2 - 10.1007/s00521-024-10346-4
DO - 10.1007/s00521-024-10346-4
M3 - Article
AN - SCOPUS:85201633186
SN - 0941-0643
JO - Neural Computing and Applications
JF - Neural Computing and Applications
ER -