The Importance of Feature Processing in Deep-Learning-Based Condition Monitoring of Motors

Dileep Kumar Soother, Jawaid Daudpoto, Nicholas R. Harris, Majid Hussain, Sanaullah Mehran, Imtiaz Hussain Kalwar, Tanweer Hussain, Tayab Din Memon

Research output: Contribution to journalReview articlepeer-review

9 Citations (Scopus)

Abstract

The advent of deep learning (DL) has transformed diagnosis and prognosis techniques in industry. It has allowed tremendous progress in industrial diagnostics, has been playing a pivotal role in maintaining and sustaining Industry 4.0, and is also paving the way for industry 5.0. It has become prevalent in the condition monitoring of industrial subsystems, a prime example being motors. Motors in various applications start deteriorating due to various reasons. Thus, the monitoring of their condition is of prime importance for sustaining the operation and maintaining efficiency. This paper presents a state-of-the-art review of DL-based condition monitoring for motors in terms of input data and feature processing techniques. Particularly, it reviews the application of various input features for the effectiveness of DL models in motor condition monitoring in the sense of what problems are targeted using these feature processing techniques and how they are addressed. Furthermore, it discusses and reviews advances in DL models, DL-based diagnostic methods for motors, hybrid fault diagnostic techniques, points out important open challenges to these models, and signposts the prospective future directions for DL models. This review will assist researchers in identifying research gaps related to feature processing, so that they may effectively contribute toward the implementation of DL models as applied to motor condition monitoring.

Original languageEnglish
Article number9927151
JournalMathematical Problems in Engineering
Volume2021
DOIs
Publication statusPublished - 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'The Importance of Feature Processing in Deep-Learning-Based Condition Monitoring of Motors'. Together they form a unique fingerprint.

Cite this