Abstract
This work aims to accelerate metaheuristic optimization algorithms and their experimental environment using the vectorization feature in the NumPy library in Python. It is built upon EvoloPy, a framework previously introduced by Faris et al. (2016)[41] for metaheuristic optimization in Python. We have vectorized every aspect of this framework including function evaluation, random number sampling, strategy selection, and performing the update equations. We compare the wall-clock time of our vectorized framework for a few algorithms with the original implementation in EvoloPy. The results demonstrate the substantial improvement in the algorithm's execution time, even to three orders of magnitude in cases like a 180-dimensional search space. The codes can be found at https://github.com/BaratiLab/VecMetaPy.
Original language | English |
---|---|
Article number | 103092 |
Journal | Advances in Engineering Software |
Volume | 166 |
DOIs | |
Publication status | Published - Apr 2022 |
Keywords
- Algorithm
- Metaheuristic
- Optimization
- Swarm intelligence
- Vectorization